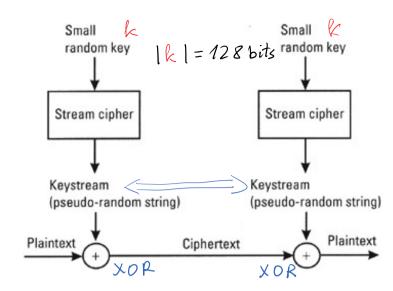


Ciphertext C2

Ciphertext CN

Ciphertext C1

AES-128-CBC : 181 = 182 = --- = 18n = 128 bits



 A <u>stream cipher</u> is one that encrypts a digital data stream one bit or one byte at a time. Examples of classical stream ciphers are the auto keyed Vigenère cipher and the Vernam cipher.

 $2 \cdot 6 \mod 11 = 12 \mod 11 = 1$

Diffie-Hellman Key Agreement Protocol - KAP Public Parameters = (P, q) = PP

>>
$$P = genstrongprime(28)$$
 // $|P| = 28$ bits
To establish KAP Public Parameters - PP are required.
 $P = 11$: defines the set of integers $Z_p^* = \{1, 2, 3, ..., P^{-1}\}$
 $Z_p^* = \{1, 2, 3, ..., 10\}$ with defined operations mod 11.
Let us fix $P - as a prime, then any integer z could be
expressed in the form
 $Z = t \cdot P + P$
Let $P = 11$ and $Z = 37 \implies Z = 3 \cdot 11 + 4$
 $37 \mod 11 = 4$
 $Z \mod P = P$
 $T \mod 12$$

$$\mathcal{I}_{\mathcal{M}}^{*} = \{1, 2, 3, \dots, 10\}^{*} \times mod \mathcal{M} : it is a group of integers mod \mathcal{P} .$$

Multiplication Tab.		Z11*								
*	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9

123_003 PublicParameters for KAP Page 2

	3	3		6	9	1	4	7	10	2	5		8	
	4	4		8	1	5	9	2	6	10	3		7	
	5	5	1	10	4	9	3	8	2	7	1		6	
	6	6		1	7	2	8	3	9	4	10		5	
	7	7			10	6	2	9	5	1	8		4	
	8						7	4	1	9	6		$\frac{3}{-32}$	
	9	-		7	5	3		10	8	6	4		$ \begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \end{array} $ $ \begin{array}{c} -32 \\ 22 \\ 1 \end{array} $	
	10	10		9	8	7	6	5	4	3	2		1	
Power Tab.	Z1	.1*											$2^{5} \mod 11 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ = 32 mod 11 = 10	modil
^	0	1	2	3	4		6			3	9 1	0	$= 32 \mod 11 = 10^{8}$	
	1	1	1	1	1	1	/1		. 1	L	1	1		
2	1	2	4	8	5	10) 9			3	6	1	gen. 1	
3	1	3	9		4	1	3	9) 5	5 4	4	1		
4	1	4	5	9	3		4		5 9)	3	1		
5	1	5	3	4	9	1			; Z	1 9	9	1		7.
6	1	6	3	7	9	10	5	8	ς	1	2	1	gen. 2 $\Gamma = \{2, 6, 7, 8\}$	l
7	1	7	5	2	3	10	4)	8	1	$= 32 \mod 11 = 10$ gen. 1 gen. 2 $\Gamma = \{2, 6, 7, 8\}$ gen. 3 $\{\mathcal{I}_{M}^{*}\} = 10$ $\{\mathcal{I}_{M}^{*}\} = 4$	
8	1	8	9	6	4	10	3	2	2 5	5	7	1	gen, 4 $ \Gamma = 4$	
9	1	9	4	3	5	1	9	4	L E	3	5	1		
10	1	10	1	10	1	10	1	10) 1	1	C	1		.*)

The probability (chance) to find a generator in I'm (or in Ip) is approximately the following

Prob (g is a generator in
$$\mathbb{Z}_{p}^{*}$$
) $\approx \frac{4}{10} = \frac{2}{5}$
 $g = randi; g \in \{2, 3, 4...\}$
 $PP = (P, g)$
For the semirity reason $P \approx 2^{2048}$; $|P| \sim 2048$ bits.
 $1 \times \rightarrow 2^{10} = 1024 > 10^{3} = 1000$
 $1 M \rightarrow 2^{20} - -- > 10^{6}$
 $1 G - 2^{30} - -- > 10^{9}$
 $1 T - 2^{40} - -- > 10^{12}$
 $\mathbb{Z}_{p}^{*} = \{1, 2, 3, ..., P^{-1}\}; \bullet mod p$

>> 2^28-1 ans = 268435<mark>455</mark>

p = 264043379 Check that *p* is strong prime; **p** = 268435019

C.5.3 Finding generators.

We have to look inside Z_P^* and find a generator. How? Even if we have a candidate, how do we test it? The condition is that g is a generator would take $|Z_P^*|$ steps to check: $p^2^{2048} - |Z_P^*|^2^{2048} - 1$. In fact, finding a generator given p is in general a hard problem.

We can exploit the particular prime numbers names as strong primes.

If **p** is prime and p=2q+1 with **q** prime then **p** is a **strong prime**. Ex, $\rho = 11 = 2 \cdot 5 + 1$ Note that the order of the group Z_P^* is p-1=2q, i.e. $|Z_P^*|=2q$. Q = (p-1)/2Fact C.23. Say p=2q+1 is prime where **q** is prime, then **g** in Z_P^* is a generator of Z_P^* iff $g^{q} \neq 1 \mod p$ and $g^{q} \neq 1 \mod p$.

Testing whether **g** is a generator is easy given strong prime **p**.

Now, given p=2q+1, the generator can be found by randomly generation numbers g<p and verifying Fact C.23. The probability to find a generator is ~0.4.

How to fing more generators when **g** one is found?

Fact C.24. If **g** is a generator and **i** is not divisible by **q** and **2** then **g**ⁱ is a generator as well, i.e.

If \boldsymbol{g} is a generator and gcd(i, q)=1 and gcd(i, 2)=1, then \boldsymbol{g}^i is a generator as well.

sourcet random number
>>
$$@ = randi (p-1)$$

 $A = g^{u} \mod p$
>> $A = mod_exp(g, u, p)$
 $B = g^{v} \mod p$
 $B = g^{v} \mod p$
 $k_{AB} = B^{u} \mod p = k = k_{BA} = A^{v} \mod p$
 $k_{AB} = B^{u} \mod p = (g^{v})^{u} \mod p = g^{vu} \mod p = g^{vu} \mod p = g^{vu} \mod p = k_{BA}$

